Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(4-hydroxybenzoato-кO)bis(1,10-phenanthroline$\left.\kappa^{2} N, N^{\prime}\right)$ cadmium(II) dihydrate

Tian-Tian Pan, Jia-Geng Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in solvent or counterion
R factor $=0.033$
$w R$ factor $=0.108$
Data-to-parameter ratio $=17.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cd}^{\mathrm{II}}$ ion is located on a twofold axis and assumes a distorted octahedral $\mathrm{CdN}_{4} \mathrm{O}_{2}$ coordination geometry, formed by two phenanthroline (phen) ligands and two 4-hydroxybenzoate (HBA) anions. $\pi-\pi$ stacking is observed between the parallel phen ligands of adjacent $\mathrm{Cd}^{\mathrm{II}}$ complexes. One water O atom is located on a twofold axis. The other water molecule is disordered over two sites.

Comment

As part of our ongoing investigation of $\pi-\pi$ stacking interactions in metal complexes (Chen et al., 2003), the title compound, (I), has been prepared and its X-ray crystal structure is presented here.

(I)

The crystal structure of (I) consists of $\mathrm{Cd}^{\mathrm{II}}$ complexes and solvent water molecules. The $\mathrm{Cd}^{\mathrm{II}}$ ion is located on a twofold axis and is coordinated by two phenanthroline (phen) ligands and two 4-hydroxybenzoate (HBA) anions with a distorted $\mathrm{CdN}_{4} \mathrm{O}_{2}$ octahedral geometry (Fig. 1). The monodentate HBA anions coordinate to the $\mathrm{Cd}^{\mathrm{II}}$ ion in a cis configuration, their benzene rings being nearly perpendicular to each other [the dihedral angle is $\left.73.50(7)^{\circ}\right]$. The two phen ligands are also nearly perpendicular to each other, the dihedral angle being 85.52 (6) ${ }^{\circ}$.

A partially overlapped arrangement between parallel phen ligands is observed in the crystal structure of (I) (Figs. 2 and 3]. The face-to-face separations between the N 2 -phen and $\mathrm{N} 2{ }^{\text {iii }}$ phen ligands [symmetry code: (iii) $1-x, 1-y, 1-z]$ and between the N 2 -phen and $\mathrm{N} 2^{\mathrm{iv}}$-phen ligands [symmetry code: (iv) $1-x, 2-y, 1-z]$ are $3.49(2)$ and $3.512(18) \AA$, respectively, indicating the existence of $\pi-\pi$ stacking between neighbouring $\mathrm{Cd}^{\mathrm{II}}$ complexes.

The hydroxy group forms an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the uncoordinated carboxylate atom O 2 of a neighbouring complex (Table 2). The solvent water molecule $\mathrm{O} 1 W$ is located on a twofold axis and is hydrogen

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The H atoms of the disordered water molecules have been omitted for clarity. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.]

Figure 2
$\pi-\pi$ stacking between parallel N 2 -phen and $\mathrm{N} \mathrm{N}^{\mathrm{iiii}}$-phen ligands of neighbouring $\mathrm{Cd}^{\mathrm{II}}$ complexes. [Symmetry code: (iii) $1-x, 1-y, 1-z$.]
bonded to the carboxylate groups of the complex (Fig. 1). The other water molecule, located close to a twofold axis, is disordered over two sites ($\mathrm{O} 2 A$ and $\mathrm{O} 2 B$), with a separation of 1.22 (2) \AA between them. The disordered water molecule is not involved in the hydrogen-bond network.

Figure 3
$\pi-\pi$ stacking between parallel N 2 -phen and $\mathrm{N} 2^{2 \mathrm{iv}}$-phen ligands of neighbouring $\mathrm{Cd}^{\mathrm{II}}$ complexes. [Symmetry code: (iv) $\left.1-x, 2-y, 1-z\right]$.

Experimental

$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.62 \mathrm{~g}, 2 \mathrm{mmol})$, 4-hydroxybenzoic acid $(0.32 \mathrm{~g}$, $2 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.21 \mathrm{~g}, 2 \mathrm{mmol})$ were dissolved in a waterethanol solution ($20 \mathrm{ml}, 3: 1$), and then phen ($0.40 \mathrm{~g}, 2 \mathrm{mmol}$) was added to the solution. The mixture was refluxed for 5 h , and then filtered after cooling to room temperature. Single crystals of (I) were obtained after three months.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=783.06$
Monoclinic, $C 2 /$ c
$a=23.158$ (11) \AA
$b=9.399$ (3) A
$c=16.802(5) \AA$
$\beta=99.416$ (2) ${ }^{\circ}$
$V=3608(2) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.702, T_{\text {max }}=0.875$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.108$
$S=1.09$
4123 reflections
235 parameters
H -atom parameters constrained
$Z=4$
$D_{x}=1.442 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colourless
$0.53 \times 0.32 \times 0.20 \mathrm{~mm}$

17121 measured reflections 4123 independent reflections 3771 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0723 P)^{2}\right. \\
& \quad+1.9122 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.89 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cd}-\mathrm{O} 1$	$2.257(2)$	$\mathrm{Cd}-\mathrm{N} 2$	$2.378(2)$
$\mathrm{Cd}-\mathrm{N} 1$	$2.389(2)$		
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{O} 1^{\mathrm{i}}$	$90.47(11)$	$\mathrm{N} 1-\mathrm{Cd}-\mathrm{N} 1^{\mathrm{i}}$	$85.02(11)$
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{N} 1$	$98.61(8)$	$\mathrm{N} 1-\mathrm{Cd}-\mathrm{N} 2$	$69.59(8)$
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{N} 1^{\mathrm{i}}$	$152.69(8)$	$\mathrm{N} 1-\mathrm{Cd}-\mathrm{N} 2^{\mathrm{i}}$	$98.27(8)$
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{N} 2$	$108.40(8)$	$\mathrm{N} 2-\mathrm{Cd}-\mathrm{N} 2^{\mathrm{i}}$	$164.01(12)$
$\mathrm{O} 1-\mathrm{Cd}-\mathrm{N} 2^{\mathrm{i}}$	$83.12(8)$		

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.99	2.04	$2.952(5)$	152
O3-H3 $^{\mathrm{O}} \mathrm{O}^{\text {ii }}$	0.82	1.81	$2.629(3)$	170

Symmetry code: (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.
The solvent water molecule located close to a twofold axis is disordered over two sites, $\mathrm{O} 2 A$ and $\mathrm{O} 2 B$. The occupancies were refined and converged to 0.273 (5) and 0.227 (5), respectively. They were fixed at 0.25 in the final cycles of refinement. The aromatic H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and refined in riding mode with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Water and hydroxy

H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ for the disordered water molecule and $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$ for the other water molecule and the hydroxy group.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

